Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Joel T. Mague, ${ }^{\text {a }}$ R Ryan M. Ivie, ${ }^{\text {b }}$ Robert W. Hartsock, ${ }^{\text {b }}$ Lynn Vogel Koplitz ${ }^{\text {b }}$ and Mary Spulak ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ${ }^{\text {b }}$ DepartDepartment of Chemistry, Loyola University, New Orleans, LA 70118, USA

Correspondence e-mail: joelt@tulane.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.029$
$w R$ factor $=0.063$
Data-to-parameter ratio $=101.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Cyano- N-methylpyridinium bromide

The title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$, forms a layered solid with each cation forming three strong and one weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds within the layer. All atoms except two of the methyl H atoms lie on a mirror plane.

Comment

Like 3-cyano- N-methylpyridinium chloride (Koplitz et al., 2003), the isostructural bromide salt, (I), has crystallographic mirror symmetry. It features four $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions which can be characterized as hydrogen bonds (Table 1). Specifically, those $\mathrm{C} \cdots \mathrm{Br}$ distances involving atoms $\mathrm{C} 2, \mathrm{C} 4$ and C6 are all shorter than the average of 3.75 (2) A given by Steiner (1998) for $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}^{-}$hydrogen bonds, while that involving atom C 1 is not much longer. In Table 1, the column headed $\mathrm{H} \cdots \mathrm{Br}$ gives the experimental $\mathrm{H} \cdots \mathrm{Br}$ distances based on calculated H -atom positions with $\mathrm{C}-\mathrm{H}=0.95 \AA$, while the values in brackets are those determined using $\mathrm{C}-\mathrm{H}$ distances of $1.083 \AA$ [common practice to correct for the 'shortening' of the $\mathrm{C}-\mathrm{H}$ distance in the X-ray experiment (Brammer et al., 2001; Steiner, 1998; Lommerse et al., 1996; Allen, 1986)]. Here, the corrected values for the $\mathrm{H} \cdots \mathrm{Br}$ contacts involving atoms H2, H4 and H6 are well below Steiner's average value of 2.64 (1) \AA, suggesting that these are robust interactions. The corrected $\mathrm{H} 1 A \cdots \mathrm{Br}$ distance is rather long compared to Steiner's value but is still shorter than a normal van der Waals contact (ca $3.06 \AA$). The $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ angles determined from the corrected H -atom positions differ from the experimental values by no more than 1° and are well within the range accepted for $\mathrm{C}-\mathrm{H} \cdots X$ hydrogen bonds. In addition, the corrected H5 $\cdots \mathrm{N} 2$ distance of $2.47 \AA$ is only slightly longer than for the corresponding separation in the chloride salt (Koplitz et al., 2003), indicating this to be also an attractive interaction. Consistent with the presence of these moderately strong intermolecular interactions, the title compound does not readily melt, but rather decomposes with charring at 493 K.

Experimental

An aqueous solution of 3-cyano- N-methylpyridinium iodide (Koplitz et al., 2003) was passed down a column of polymer-supported bromide ion exchange resin (Aldrich catalogue No. 51,376-8) and the

Received 24 January 2005 Accepted 28 February 2005 Online 4 March 2005
eluate evaporated to dryness. Crystals for the structure determination were grown by slow evaporation of a solution of the compound in a 1:1 (v / v) mixture of acetonitrile and ethanol. Analysis calculated for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{Br}$: C 42.23, H 3.55, N 14.08, Br 40.14\%; found: C 41.9, H 3.9, N 14.0, $\mathrm{Br} 39.3 \%$. IR absorption bands (KBr pellet): $\mathrm{C}-\mathrm{H}$ stretch, 3083 (m), 2999 (s), 2954 (s), 2926 (s), $2849(m) \mathrm{cm}^{-1} ; ~ \mathrm{C}-\mathrm{N}$ stretch: $2244(m) \mathrm{cm}^{-1} ; \mathrm{C}-\mathrm{H}$ in-plane deformation: $1639(m), 1507(m) \mathrm{cm}^{-1}$. C-H out-of-plane deformation: $834(m), 671(s) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR chemical shifts $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 9.40(s, 1 \mathrm{H}, \mathrm{H} 2), 9.06(d, 1 \mathrm{H}, \mathrm{H} 4), 8.89(d, 1 \mathrm{H}$, H6), $8.21(t, 1 \mathrm{H}, \mathrm{H} 5), 4.44(s, 3 \mathrm{H}, \mathrm{H} 1 A, B)$.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=199.06$
Monoclinic, $P 2_{1} / m$
$a=8.109$ (1) \AA 。
$b=6.6266$ (8) A
$c=8.381$ (1) A
$\beta=113.406(2)^{\circ}$
$V=413.30(9) \AA^{3}$
$Z=2$
$D_{x}=1.600 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4284 reflections
$\theta=2.7-28.2^{\circ}$
$\mu=4.90 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Plate, colorless
$0.16 \times 0.11 \times 0.01 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2003)
$T_{\text {min }}=0.515, T_{\text {max }}=0.948$
6277 measured reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.063$
$S=0.93$
6277 reflections
62 parameters

Figure 1
The title compound, viewed down the b axis. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by spheres of arbitrary radii.

Figure 2
A portion of a layer of (I), showing the hydrogen bonding (dashed lines). [Symmetry codes: (I) $1+x, y, z$; (II) $1+x, y, 1+z ;(*) x, y,-1+z ;\left({ }^{\prime}\right)$ $\left.-1+x, y,-1+z ;\left(^{\prime \prime}\right)-1+x, y, z ;\left(^{\wedge}\right) x, y, 1+z.\right]$
refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

We thank the Chemistry Department of Tulane University for support of the X-ray laboratory and the Louisiana Educational Quality Support Fund administered by the Louisiana Board of Regents for purchase of the CCD diffractometer under grant LEQSF (2002-03)-ENH-TR-67.

References

Allen, F. H. ((1986). Acta Cryst. B42, 515-522.
Brammer, L., Bruton, E. A. \& Sherwood, P. (2001). Cryst. Growth Des. 1, 277290.

Bruker (2000). SMART (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). SAINT-Plus (Version 7.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Koplitz, L. V., Bay, K. D., DiGiovanni, N. \& Mague, J. T. (2003). J. Chem. Crystallogr. 33, 391-402.

organic papers

Lommerse, J. P. M., Stone, A. J., Taylor, R. \& Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108-3116.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2003). TWINABS. Version 1.05. University of Göttingen, Germany
Sheldrick, G. M. (2004). CELL_NOW. University of Göttingen, Germany. Steiner, Th. (1998). Acta Cryst. B54, 456-463.

